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Two opposite conclusions are known on the symmetry of the vector coupling coefficients
(VCCs), amn and bmn, in the restricted open-shell Hartree–Fock (ROHF) method. The first
one states that the VCCs are symmetric for all spectroscopic terms, i.e., amn = anm and
bmn = bnm. An opposing statement is that the “non-Roothaan” terms, arising from the
degenerate open-shell electronic configuration γN , can be characterized by non-symmetric
VCCs matrices only: ‖amn‖ 6= ‖anm, ‖bmn‖ 6= ‖bnm‖. This article presents a detailed
analysis of the VCCs symmetry problem. A general approach to the VCCs determination
has been developed leading to non-symmetric VCCs for γN systems with dim γ > 3. The
main purpose of this work is to eliminate the contradiction arising in the ROHF theory when
the latter is applied to highly symmetric open-shell molecules and atoms.

1. Introduction

In the restricted open-shell Hartree–Fock (ROHF) method [1–5], one starts from
the following expression for energy functional:

EROHF = 2
∑
i

fiHii +
∑
i

∑
j

fifj(2aijJij − bijKij), (1.1)

where aij and bij are non-variable coefficients, characterizing the state under consider-
ation, usually called the “vector coupling coefficients” (VCCs) [6]; fi is the fractional
occupation number of one-electron orbital φi; Hii, Jij and Kij are the usual core,
Coulomb and exchange integrals, respectively.

Application of the variational principle to the expression (1.1) with the additional
orthonormality conditions

〈φi|φj〉 = δij (1.2)

leads to the Euler equations [2]

Fi|φi〉=
∑
j

|φj〉θji, (1.3a)
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θji = θ∗ij , (1.3b)

where θji is the Lagrangian multiplier, and Fi is the Fock operator [4,5]

Fi = fi

(
h+

∑
j

fj(2aijJj − bijKj)

)
(1.4)

expressed in terms of the Hermitian one-electron h, Coulomb Jj and exchange Kj

operators [1].
In this paper we consider the particular case of equations (1.1) and (1.4),

corresponding to a state of the degenerate open-shell electronic configuration γN

(γ = p, d, . . . for atoms, and γ = e, t, g, h for non-linear molecules). For this case,
equation (1.1) can be written as

EROHF = E
(2S+1Γ, γN

)
= Er + f 2

∑
m

∑
n

(2amnJmn − bmnKmn), (1.5)

where 2S+1Γ is the state under consideration; f = N/(2 dim γ); dim γ is the dimension
of the irreducible representation γ, and the term Er (Erest) is the same for all states of
a configuration γN [1]:

Er = 2
∑
k

Hkk +
∑
k

∑
l

(2Jkl −Kkl)

+ 2f

(∑
m

Hmm +
∑
k

∑
m

(2Jkm −Kkm)

)
(1.6)

(m,n are the indices for the open-shell orbitals; k, l are for the closed-shell ones, and
i, j are for orbitals of either set).

The expression (1.4) for the open-shell Fock operator reads

Fm = f

(
h+ 2Jc −Kc + f

∑
n

(2amnJn − bmnKn)

)
, (1.7)

where Jc =
∑

k Jk and Kc =
∑

kKk.
The coefficients amn and bmn, entering equations (1.5) and (1.7), are sup-

posed [5–8] to form the symmetric matrices

amn = anm, bmn = bnm. (1.8)

This supposition is based on the expression for energy functional (1.5). Since the
Coulomb and exchange integrals are symmetric (Jmn = Jnm and Kmn = Knm),
the coefficients amn and bmn in equation (1.5) can be derived in symmetric form as
well [5].

On the other hand, two expressions under consideration, equations (1.5) and (1.7),
are essentially different from the viewpoint of the coupling coefficients symmetry. In
contrast to equation (1.5), the expression for the Fock operator (equation (1.7)) is
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asymmetric with respect to the repositioning of the coefficients amn and anm, and also
for bmn and bnm.

Such a VCCs asymmetry of the Fock operators was found to be responsible for
the somewhat paradoxical results [9,10]. According to the latter works, several states
arising from the atomic configurations dN and pMdN (N = 1−9, M = 1−5), can be
characterized by non-symmetric VCCs matrices only:

‖amn‖ 6= ‖anm‖, ‖bmn‖ 6= ‖bnm‖. (1.9)

This conclusion follows from the analysis of the symmetry restrictions, to which
the coefficients of both equations (1.5) and (1.7) must satisfy in the cases under con-
sideration [9,10]. For dN atoms, this conclusion was confirmed by the results of the
ROHF calculations. By comparing the two sets of the ROHF results derived with
non-symmetric VCCs of [9] and previously published symmetric VCCs [11], respec-
tively, with the reference results derived by the Roothaan–Bagus atomic “expansion
method” [12] we unambiguously show the validity of non-symmetric VCCs only [9]
(see also the discussion below).

In [13–15] we found that the VCCs asymmetry (equation (1.9)) arises for the
most highly symmetric open-shell systems with configuration γN . For systems with
dim γ 6 3, such as the structures of cubic symmetry (Td, 0, 0h) with electronic config-
uration tN (N = 1−5), the use of both symmetric and non-symmetric VCCs leads to
identical ROHF results [13]. For more complex γN systems with dim γ > 3, exam-
ples of which are the icosahedral symmetry structures (I, Ih) with configurations gN

(dim g = 4) or hN (dim h = 5), the situation is similar to that as for dN atoms. For
several (2S+1Γ, gN ) and (2S+1Γ, hN ) states, only non-symmetric VCCs are found to
satisfy all necessary symmetry restrictions [14,15].

The latter result explains the difficulties which arise in the ROHF calculations
on open-shell fullerenes and their metal complexes of icosahedral symmetry. Accord-
ing to [16,17], many open-shell states of such structures cannot be calculated by the
existing ROHF method (based on the use of symmetric VCCs only).

However, before using the non-symmetric VCCs in routine calculations, one
should overcome the contradiction arising in the ROHF theory while introducing
the VCCs. As follows from [5,8], the use of non-symmetric VCCs, in itself, comes
into conflict with the Euler equations (1.3). The Fock operators of equation (1.7)
constructed with non-symmetric VCCs cannot be derived straightforwardly from the
initial energy functional of equation (1.1).

This paper presents the detailed analysis of the VCCs symmetry problem. Sec-
tion 2 gives a review of the ROHF theory for highly symmetric open-shell γN systems.
In section 3 we show the necessity for the VCCs of equations (1.5), (1.7) to be sym-
metric and discuss in more detail the arising contradiction.

In sections 4 and 5 we reanalyze the symmetry restrictions that the γN state
VCCs, amn and bmn, must satisfy, and derive the complete set of equations for de-
termining the VCCs. For several γN states with dim γ > 3, new equations give the
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non-symmetric VCCs only. A testing of the theory developed is given in section 6 in
the example of dN atoms. Finally, in section 7, we prove the equivalency of the Fock
operators constructed with different VCCs sets (both symmetric and non-symmetric)
that can be derived from new symmetry restrictions.

2. Brief review

Expression (1.1) for the Hartree–Fock open-shell state energy is valid in the most
but not all cases. A more general expression has the form [4,5]

E =
∑
i

∑
j

(
ωijHij +

∑
k

∑
l

βij,kl〈ij|kl〉
)

, (2.1)

where

〈ij|kl〉 =

∫
φ∗i (1)φj (1)

1
r12

φ∗k(2)φl(2) dV1 dV2 (2.2)

and ωij ,βij,kl are coefficients, characterizing the state under consideration. (In equa-
tions (2.1) and (2.2), the indices i, j, k, l refer to all occupied orbitals.)

Expression (2.1) stems from the general definition of the ROHF state energy [1],
which can be written as follows:

E
(2S+1Γ

)
=

1
dim Γ

∑
Γr

〈
Ψ(S,MS , Γ, Γr)

∣∣Ĥ∣∣Ψ(S,MS , Γ, Γr)
〉
, (2.3)

where Ψ(S,MS , Γ, Γr) is the multielectron wave function of the correct spin (S,MS)
and spatial (Γ, Γr) symmetry; Γr is the row of the degenerate irreducible representa-
tion Γ. In the case of an atom, the Γ and Γr characteristics are substituted by quantum
numbers L and ML (total angular momentum and its projection), respectively.

Expression (2.3) corresponds to the Roothaan’s definition of state energy as “the
average expectation value for all the degenerate total wave functions of the state
under consideration” [1]. (An additional averaging over MS in equation (2.3) is not
necessary.)

Equation (2.1) gives a general expression for energy, valid in both monocon-
figurational (Hartree–Fock) and multiconfigurational approaches [4,5]. In the former,
expression (2.1) is not used in practice since for most open-shell systems it can be
presented in more simple form of equation (1.1). Such a representation of energy leads
to the essential simplification of the ROHF variational equations [2,4] and makes the
practical computations much easier [5,8]. The methods for reducing equation (2.1) to
equation (1.1) are discussed below.

The optimum orbitals {φi} which minimize the energy of equation (1.1) can be
found by the direct solving of the Euler equation (1.3) [18,19]. In an equivalent but
more general approach developed in [1–5], the orbitals to be found are the eigenfunc-
tions of the Hartree–Fock equation

R|φi〉 = εi|φi〉, (2.4)
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where R is the unified SCF coupling operator. For the first time, an equation of
type (2.4) was derived by Roothaan [1] for the states, where energy can be expressed
by equation (1.5) with

amn = a, bmn = b. (2.5)

General expressions for the Hermitian R operator, corresponding to the energy func-
tional (1.1), were derived in [2–6]. Hereinafter, we use the expression for the operator
R derived in [3,4]:

R =
∑
i

(
(I − ρ)Fiρ

i + ρiFi(I − ρ) + ρiFiρ
i

)
+
∑
i

∑
j

λijρ
j(Fi − Fj)ρi, (2.6)

where λji = −λij are arbitrary non-zero numbers, Fi is the Fock operator of equa-
tion (1.4), and

ρi = |φi〉〈φi|, ρ =
∑
i

ρi (2.7)

are the projection operators.
When solving the Euler equation (1.3), or the equivalent Hartree–Fock equa-

tion (2.4), one faces the known difficulty [1–3]. The Lagrangian multipliers in equa-
tion (1.3) must be Hermitian, i.e., θji−θ∗ij = 0. The latter constraints can be expressed
in the form [2,3]

〈φj |Fi − Fj |φi〉 = 0, (2.8)

i.e., in the form of the variational conditions among the occupied orbitals. These
conditions are non-trivial only for open-shell systems with Fi 6= Fj , whereas for closed-
shell systems, equations (2.8), (1.3b) assert identically. Inasmuch as equation (1.3a)
expresses the variational conditions between occupied and virtual orbitals, two Euler
equations (1.3a,b) represent the complete set of variational conditions [2,3].

As shown in [3], the latter set of conditions is equivalent to that following from
the generalized Brillouin theorem [20]. If the optimum orbitals {φi} are obtained,
which satisfy the Euler equation (1.3), the off-diagonal Hamiltonian matrix elements
over the wave functions of the ground and one-electron excited states vanish.

In the one operator approach (equations (2.4), (2.6)), the constraints discussed
are incorporated into the expression for the R operator. In the self-consistent limit
(Rij = δijεi) the orbitals of equation (2.4) represent the solution of equations (1.3a,b)
as well.

2.1. Coupling coefficients for configuration γN with dim γ 6 3

From a physical point of view, the VCCs aij and bij entering equation (1.1)
and subsequent variational equations (1.3), (1.4), (2.4), are some parameters of the
theory, i.e., some coefficients not defined by basic equations. In general, these coeffi-
cients can correspond either to a separate spectroscopic term [1,8], or to some average
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energy functionals [17,18,21]. In some approximations, such as the “half-electron
method” [22], these quantities have well-defined values independent of the system
under consideration.

A usual approach for determining the state VCCs

aij = aij
(2S+1Γ

)
, bij = bij

(2S+1Γ
)

(2.9)

is to somehow represent the initial expression for state energy (equation (2.3)) in the
form of equation (1.1).

Such a representation can be derived either by direct methods (see section 5)
or through the mediation of equation (2.1). For γN systems under study, all terms
in equation (2.1) describing the closed-shell electronic subsystem and the interaction
between the closed-shell and open-shell manifolds, are expressed by equation (1.6) [1].
The difficulty in reducing equation (2.1) to equation (1.5) arises from the non-vanishing
four-indexed integrals, 〈mm|nn〉, over the degenerate open-shell {γ} orbitals.

Representation of the latter terms by equation (1.5) is easily obtained for γN

systems with dim γ 6 3, such as the pN atoms, or molecular systems with configura-
tions eN and tN . For such system, the representation (1.5) immediately follows from
equation (2.1) if one uses the degenerate orbitals of the “standard” representation [23].

Degenerate open-shell orbitals {φm}, m = 1, 2, . . . , dim γ, are the eigenfunctions
of the R operator (equation (2.4)), and are determined within the accuracy up to a
unitary transformation U :

{φm} = {φm}◦ × U , (2.10)

where {φm}◦ are the orbitals of the standard representation γ. The latter orbitals can be
obtained from arbitrary {φm} ones by the action of the ε(γ) projection operators [23].
The advantage of using the {φm}◦ orbitals is that the majority of the 〈mm|nn〉 integrals
over the {φm}◦ orbitals are equal to zero.

In particular, for systems of tetragonal symmetry (D4h, C4v, D2d) with configu-
ration eN , or of cubic symmetry (Td, 0, 0h) with configuration tN , all the 〈mm|nn〉
integrals over the real {em}◦ or {tm}◦ orbitals, apart from the Coulomb and exchange,
vanish [24]:

〈mm|nn〉 = δmmδnnJmn + (δmnδmn + δmnδmn)(1− δmm)Kmm (2.11)

(m,m,n,n = 1, 2, . . . , dim γ), i.e., there are only three non-zero integrals: Jmm =
Jnn, Jmn and Kmn (m 6= n). Substitution of equation (2.11) into equation (2.1) gives
the desired representation (1.5) with the coefficients

amn = βmm,nn/
(
2f 2),

(2.12)
bmn =

(
2δmnβmm,mm − (βmn,nm + βmn,mn)

)
/f 2.

As indicated above, such an approach is valid only for γN systems with
dim γ 6 3. For more complex electronic configurations, such as dN of an atom, or
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gN (dim g = 4) and hN (dim h = 5) of icosahedral symmetry systems (I, Ih), the rep-
resentation (2.11) is no longer valid. Some three and four indexed integrals over the
{φm}◦ orbitals remain non-zeroth [14,15,25].

The known methods for determining the VCCs of equation (1.5) [5–8,17,18,21,24]
are also valid for γN states with dim γ 6 3 only. For systems with dim γ > 3, these
methods give the VCCs only for states that appear isolated by spin multiplicity, or for
some averaged energy functionals [17,18,21].

A general approach to determining the VCCs of equation (1.5) [26] valid for any
state of arbitrary configuration γN (except for the multiple (double) terms) is presented
in section 5.

2.2. “Non-Roothaan” states

The VCCs amn and bmn defined by equation (2.12) correspond to the definite
choice of the degenerate orbitals, i.e., to the {φm}◦ ones of equation (2.10). In section 5
one shows that the representation (1.5) can also be derived for an arbitrary choice of
the {φm} orbitals. The essential point is that the VCCs amn and bmn of equation (1.5)
depend on the {φm} orbital basis used [24,27].

The latter dependence can be symbolically written as

amn = amn(U ), bmn = bmn(U ). (2.13)

In the iterative SCF procedure, the matrix U defined by equation (2.10) is an arbitrary
one. Inasmuch as the state VCCs amn and bmn enter variational equations (1.3),
(1.4), (2.4), one must use some special measures to maintain the symmetry of the state
under study in the iterative procedure [24,27]. A usual approach to account for the
VCCs “phase dependence” (equation (2.13)) is to fix the {φm}◦ basis in the iterative
procedure [9,13].

The VCCs phase dependence (2.13) takes place for most but not all states of a
configuration γN . Such a dependence does not arise for γN states characterized by
the two coupling coefficients of equation (2.5) [1]:

amn = a, bmn = b.

For all other γN states, for which equation (2.5) does not assert, one uses the VCCs
matrices, amn and bmn, defined over the degenerate {γ} orbitals. In such cases, the
VCCs to be found are dependent on the choice of the degenerate {γ} orbitals.

Hereinafter, we shall refer to the states of a configuration γN characterized by
the VCCs of equation (2.5), as to Roothaan states. All other γN ones characterized
by the phase-dependent VCCs matrices of equation (2.13), will be referred to as non-
Roothaan states.

Such a division of the γN states is a natural one in the ROHF theory [9,24] (see
also section 6.1). As an example of such a division, one can consider the states of the
configuration t41u in the 0h point symmetry group:

t41u(0h)→ 3T1g + 1T2g + 1Eg + 1A1g. (2.14)
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These states are divided into two groups, (3T1g, 1A1g) and (1T2g, 1Eg), respectively.
The states of the first group are characterized by the Roothaan’s VCCs [24]

a
(1

A1g
)

= 3/4, b
(1

A1g
)

= 0;
(2.15)

a
(3

T1g
)

= 15/16, b
(3

T1g
)

= 9/8.

Two other states are non-Roothaan ones and are characterized by the VCCs matrices,
‖amn‖ and ‖bmn‖, depending on the choice of the degenerate {t1u} orbitals [24].

If one uses the {t1u}◦ orbitals of the standard representation, {t1u,x, t1u,y , t1u,z} [23],
the VCCs matrices for the 1T2g and 1Eg states under consideration can be expressed
in the form

amn = δmna
′ + (1− δmn)a′′, bmn = b (2.16)

with three independent coefficients, a′, a′′ and b [24]:

1T2g: a′ = 9/16, a′′ = 15/16, b = 3/8;
1Eg: a′ = 21/16, a′′ = 12/16, b = 9/8.

(2.17)

The origin of the coefficients in equations (2.15)–(2.17), and the interrelations between
them are shown in figure 1.

Figure 1 shows the relationship between the VCCs for the tN states of cubic
symmetry systems and for the corresponding (parent) atomic pN states. As follows
from figure 1, the non-Roothaan states of configuration t4 are those which originate

Figure 1. Methods of averaging the energy over the states of the configuration t4 in the point group 0h,
leading to energy expression of the Roothaan type (equation (2.5)): (I) Over the states arising from one
parent atomic state of the configuration p4; the a and b coefficients in the EIa, EIb and EIc functionals
coincide with the corresponding coefficients [1] for the 1S, 1D and 3P atomic states, respectively; non-
Roothaan states are marked by asterics. (II) Over the states of one multiplicity; corresponding a(Es)
and b(Es) coefficients are given in equation (2.21). (III) Average energy of the configuration, Eav; the

a(Eav) and b(Eav) coefficients are given in equation (2.22).
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from the one parent atomic state (1D, p4) due to the Bethe’s splitting [28]. The latter
correspondence can be expressed as

2E
(1Eg, t4

)
+ 3E

(1T2g, t4
)

= 5E
(1D, p4) (2.18)

or, in form of the relations between the states VCCs [24],

2amn
(1Eg, t4

)
+ 3amn

(1T2g, t4
)

= 5a
(1D, p4),

(2.19)
2bmn

(1Eg, t4
)

+ 3bmn
(1T2g, t4

)
= 5b

(1D, p4).
These relations are valid for any choice of the degenerate {t1u} orbitals.

The amn and bmn coefficients discussed also satisfy some other relations inherent
in the states of a configuration γN (see figure 1). The first relation can be derived
from the expression for the average multiplet energy, ES , i.e., the average energy of
the states of one multiplicity

ES =
∑

Γ

(
E
(2S+1Γ

)
× dim Γ

)/∑
Γ

dim Γ. (2.20)

As shown in [24], the average multiplet energy ES of a configuration γN can be
represented by equation (1.5) with the two coupling coefficients of the Roothaan’s
type:

a
(
ES , γN

)
=
(
N2(N − 1) + fN (N − 4) + 4fS(S + 1)

)/(
N
(
N2 − 4f 2)),

(2.21)
b
(
ES , γN

)
=
(
4f (N − 1) +N (N − 4) + 4S(S + 1)

)/(
N2 − 4f 2),

where f = N/(2 dim γ). For the above configurations t41u and p4, the coefficients of
equation (2.21) are as follows: a(E0) = 27/32, b(E0) = 9/16, and a(E1) = 15/16,
b(E1) = 9/8.

The well-known representability of the average energy Eav of a configuration γN

by the Roothaan’s VCCs [25,29]

a
(
Eav, γN

)
= b
(
Eav, γN

)
= (N − 1)/(N − f ) (2.22)

follows from equations (2.20), (2.21), if one averages the latter expressions over all
possible values of the spin number S [24].

All the above coupling coefficients, corresponding either to a separate (2S+1Γ, γN )
state, or to the average values of equations (2.19), (2.21) and (2.22), satisfy the fun-
damental condition [24]

f 2
(
−
∑
m

bmm + 2
∑
m

∑
n

amn

)
= N (N − 1)/2 (2.23)

following from two-particle density normalization for a γN system.
In section 5 we show the latter condition is the one of the set of conditions

ensuring the consistency between the two representations for γN state energy given
by equations (1.5) and (2.3).
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2.3. Non-totally symmetric Fock operators

For a γN state described by the Roothaan one-open-shell SCF theory [1], i.e.,
characterized by the VCCs of equation (2.5), all the Fock operators Fm of equa-
tion (1.7) are equal to each other (Fm = F0) and are totally symmetric. The latter
follows from that the Hermitian J0 and K0 operators,

J0 =
∑
n

Jn, K0 =
∑
n

Kn, (2.24)

are totally symmetric [1], i.e., their eigenfunctions belong to the irreducible represen-
tations of the symmetry group under consideration.

As follows from the definition of a totally symmetric operator, its matrix over
the degenerate {φm} orbitals is a diagonal one with diagonal elements equal to each
other. In the case of J0 and K0 operators, the condition of equality of the diagonal
elements, (J0)mm = (J0)mm and (K0)mm = (K0)mm, m 6= m, is expressed as∑

n

Jmn =
∑
n

Jmn,
∑
n

Kmn =
∑
n

Kmn (m 6= m). (2.25a)

Corresponding off-diagonal matrix elements, (J0)mm and (K0)mm, are equal to zero,
i.e., ∑

n

〈mm|nn〉 = 0,
∑
n

〈mn|nm〉 = 0 (m 6= m). (2.25b)

The latter relations will be used below.
If the state VCCs, amn and bmn, are not equal to each other in the sense of

equation (2.5), the open-shell Fock operators Fm (equation (1.7)) are non-totally sym-
metric. It follows herefrom, that non-Roothaan states of a configuration γN can be
described by non-totally symmetric Fock operators only.

There is nothing wrong with it from the purely theoretical point of view, since the
Fock operators play some auxiliary part in the ROHF theory (see also section 7). The
totally symmetric operator is the one-electron Hamiltonian R of equation (2.4). From
a practical point of view, however, there arise some inconveniences since those Fm
operators are non-invariant under arbitrary unitary transformation within an open-shell
orbital set.

Such a non-invariance was discussed by Hirao [4], who proposed to use the
totally symmetric Fock FI and projection ρI operators, i.e., the operators averaged over
the separate orbitals sets. As shown in [4], the Euler equations (1.3), as well as the
Hartree–Fock equation (2.4), can also be expressed in terms of the FI and ρI operators
(see [4, equation (3.8)]).

As a matter of a fact, the approach [4] does not eliminate all the difficulties
arising in the ROHF calculations on highly symmetric structures [16,17]. For the γN
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systems under consideration, there are two sets of orbitals, closed-shell and open-shell,
spanned by the projection operators

ρc =
∑
k

|φk〉〈φk|, ρ0 =
∑
m

|φm〉〈φm| (2.26)

and ρ = ρc + ρ0. The totally symmetric shell-averaged Fock operators FI of [4] can
be expressed as

Fc = h+ 2Jc −Kc + f (2J0 −K0), (2.27a)

F0 = f
(
h+ 2Jc −Kc + f (2a0J0 − b0K0)

)
, (2.27b)

where a0 and b0 are some coefficients. In this meaning, the latter correspond to one
of the Roothaan’s VCCs sets given by equations (2.15), (2.21) and (2.22).

Thus, for the γN systems under consideration, this approach [4] is equivalent to
the Roothaan’s one-open-shell ROHF theory [1]. As a consequence, the non-Roothaan
states characterized by the VCCs matrices of a general form (equations (2.13), (2.16))
are not covered by the method [4].

Such a limitation does not arise in the ROHF theory if one uses the non-totally
symmetric Fock operators. To eliminate the non-invariance of the latter under trans-
formation of the degenerate orbitals, one can either use the fixed {φm}◦ orbitals ba-
sis [9,13], or introduce the explicit form for the VCCs phase dependence of equa-
tion (2.13) into the SCF iterative procedure [26].

The other side of this problem is to satisfy all conditions following from the
requirement for the R operator of equation (2.4) to be totally symmetric. These
conditions are discussed in section 4.

3. The VCCs asymmetry problem

The most serious difficulty arising in the ROHF theory is connected with the
asymmetry of the VCCs, amn and bmn, for the states of the degenerate open-shell
configuration γN . As pointed out in the introduction, there are two opposite conclu-
sions for this problem (see equations (1.8), (1.9), and corresponding text).

This section presents a simple proof of the supposition [5,8] that the VCCs of
equations (1.1), (1.4) are to be symmetric for all spectroscopic terms:

aij = aji, bij = bji. (3.1)

In the next subsection, we discuss the origin of the VCCs asymmetry and formulate
the main points of the arising contradiction.

The supposition [5,8], itself, has a fundamental basis. The expression for energy
(equation (1.1)), underlying the ROHF theory [1–5], is symmetric with respect to
the repositioning of the coupling coefficients, aij and aji, and also for bij and bji.
Therefore, all other expressions derived from the energy functional, must also be
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symmetric in this sense. The latter means that the VCCs aij and bij , themselves, can
always be symmetric.

The principal question raised is where can the VCCs asymmetry come from?
As shown in [9], the source of the VCCs asymmetry is the expression for the Fock
operator of equation (1.4), which does not possess the necessary symmetry with respect
to the VCCs repositioning.

Taking the latter into account, the authors of [30] have reanalyzed the variational
procedure (equations (1.1)–(1.4)), leading to the expression for the Fock operator. For
the first variation of the energy, the well-known expression [2] was derived:

δEROHF = 2
∑
i

(
〈δi|Φi|i〉+ 〈i|Φi|δi〉

)
, (3.2)

where Φi is the “new” Fock operator defined by the expression [30]

Φi = fi

(
h+

∑
j

fj(2AijJj −BijKj)

)
(3.3)

with the coefficients

Aij = (aij + aji)/2, Bij = (bij + bji)/2. (3.4)

The Euler equation (1.3), in which the Fock operators Fi of equation (1.4) are substi-
tuted by the new ones of equation (3.3), follow from equation (3.2) if one takes into
account the additional orthonormality conditions of equation (1.2).

Equations (3.3), (3.4) are the basic ones considered when discussing the VCCs
symmetry problem. By definition, the coefficients Aij and Bij are symmetric:

Aij = Aji, Bij = Bji. (3.5)

It follows herefrom that the usual expression for the Fock operator (equation (1.4)) is
valid if the restrictions of equation (3.1) hold, in accordance with [5,8].

To clarify the latter statement, one can substitute the aij and bij coefficients
entering the expression for energy (equation (1.1)) by their symmetric (Aij and Bij)
and antisymmetric

A′ij = (aij − aji)/2, B′ij = (bij − bji)/2 (3.6)

combinations. Substitution of equations (3.4), (3.6) into equation (1.1) gives

EROHF = 2
∑
i

fiHii +
∑
i

∑
j

fifj(2AijJij −BijKij). (3.7)

In terms of the symmetric coefficients Aij and Bij , the expression for the Fock operator
derivative of the energy functional (3.7) is nothing but equation (3.3). If one further
renames the coefficients Aij and Bij in equations (3.3), (3.5) and (3.7) as aij and bij ,
the initial equations (1.1) and (1.4) are obtained, added by the rigid VCCs symmetry
restrictions of equation (3.1).
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3.1. Comments to the contradiction arisen

The above proof of the VCCs symmetry is a simple one and would not deserve
attention if the consequences were not so serious. Equation (3.1) first presented without
proof in [5,8] is in grave contradiction with the results [9,10,13–15] mentioned in the
introduction. Here we briefly recall the latter results and formulate the main points of
this contradiction.

According to [9,14], the non-Roothaan states arising from the electronic config-
urations γN with dim γ > 3 (such as the dN of an atom, or gN and hN of icosahedral
symmetry systems) cannot be calculated with symmetric VCCs. The correct ROHF
calculation on such states is possible with non-symmetric VCCs only [9,14]. As for
the corresponding Roothaan states, they can be calculated with both symmetric and
non-symmetric VCCs. For more simple systems with dim γ 6 3, the symmetric and
non-symmetric VCCs are found to be equivalent for all γN states [13,26].

Taking into account both the above proof of the VCCs symmetry and the results
mentioned, one can formulate the main points of the arising contradiction:

(1) The operators of equations (1.4), (1.7) are the true Fock operators derivative of
energy functional (equation (1.1)), if the VCCs amn and bmn are symmetric.

(2) The use of expression (equation (1.7)) with non-symmetric VCCs, as proposed
in [9], actually means that one uses some “pseudo-Fock” operators instead of the
true ones. Those pseudo-Fock operators cannot be derived straightforwardly from
the given expression for energy (equation (1.1)).

(3) The equivalency of symmetric and non-symmetric VCCs for the Roothaan γN

states found in calculations [9,13] means the following: the optimum orbitals {φi}
derived from variational equations (1.3), (2.4) by using the pseudo-Fock operators
are identical to those derived by using the true Fock operators. Moreover, the
unified coupling operator R of equation (2.4) constructed from either set of the
Fock operators is the same.

(4) For the non-Roothaan γN states with dim γ > 3, the use of only non-symmetric
VCCs makes it possible to maintain the symmetry of the state under study in the
Euler and Hartree–Fock equations [9,14].

The purpose of present article is to give a theoretical substantiation of the results
(3) and (4), first found by numerical calculations. Following this purpose, in the next
sections we use the expression for the Fock operator given by equation (1.7) with no
prior suppositions as to the VCCs symmetry restrictions. The above rigid constraints
of equations (1.8), (3.1) are discussed in a corresponding place after a deriving the
alternative VCCs symmetry restrictions.

4. Totally symmetric unified coupling operator

As pointed out in section 2.3, the requirement for the unified SCF coupling
operator R of equation (2.4) to be totally symmetric has to be satisfied independently
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Table 1
General structure of the totally symmetric operator R matrix over the

degenerate non-self-consistent orbitals of the symmetry γ.

Open-shell orbitals Virtual orbitalsa,b

1 2 . . . nγ M + 1 M + 2 . . . M + nγ

1 R00 0 R0v 0

2 R00 R0v

. . .
. . .

. . .

nγ 0 R00 0 R0v

M + 1 Rv0 0 Rvv 0

M + 2 Rv0 Rvv

. . .
. . .

. . .

M + nγ 0 Rv0 0 Rvv

a (M + 1) is the number of the first virtual orbital of the symmetry γ;
nγ = dim γ.
b Diagonal structure of the off-diagonal matrix blocks is obtained if
the corresponding orbitals of the two sets, φm and φM+m (m =
1, 2, . . . ,nγ), belong to the one row γm of the irreducible represen-
tation γ.

of the Fock operators symmetry. In this section we analyze the restrictions on the
γN state VCCs, amn and bmn, which arise from the requirement for the Hermitian R
operator to be totally symmetric [26].

Table 1 showes the general structure of the R operator matrix over the degenerate
orbitals of symmetry γ. To simplify the presentation of the matrix, only the open-shell
and virtual orbitals are shown in table 1.

In the first place, we consider the diagonal matrix block ‖Rmn‖ over the open-
shell orbitals {φm}. As pointed out in section 2.3, such a matrix must be the diagonal
one with diagonal elements equal to each other. These two conditions can be expressed
as

Rmm =Rmm (m 6= m), (4.1)

Rmm =R∗mm = 0 (m 6= m). (4.2)

Using the expression for the R operator (equation (2.6)), the Rmm element takes the
form

Rmm = 〈φm|R|φm〉 = 〈φm|Fm|φm〉

= f

(
Hmm +

∑
k

(2Jkm −Kkm) + f
∑
n

(2amnJmn − bmnKmn)

)
, (4.3)
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where the open-shell Fock operators Fm are defined by equation (1.7). Substituting
equation (4.3) into equation (4.1) and taking into account the equalities

Hmm = Hmm,
∑
k

(2Jkm −Kkm) =
∑
k

(2Jkm −Kkm), (4.4)

valid for all degenerate m 6= m [1], equation (4.1) can be expressed in the form of the
restrictions on the VCCs to be found:∑

n

(2amnJmn − bmnKmn) =
∑
n

(2amnJmn − bmnKmn) (m 6= m). (4.5)

This equation was first derived in [9] using a somewhat different approach.
The second symmetry condition (equation (4.2)) takes the form

Rmm = λmm〈m|Fm − Fm|m〉 = 0 (m 6= m), (4.2a)

where λmm 6= 0 (see equation (2.6)). This condition is nothing but the Euler equa-
tion (2.8) expressing the variational conditions among the open-shell orbitals.

For a system with non-degenerate open-shell orbitals, the constraints of equa-
tions (2.8), (4.2a) are satisfied after self-consistence is achieved [2,3]. In the case of
degenerate {φm} orbitals, equation (4.2a) must assert identically, i.e., for arbitrary non-
self-consistent orbitals.

Off-diagonal matrix element 〈m|Fm|m〉 of equation (4.2a) is equal to

〈m|Fm|m〉= f

[∑
k

(
2〈mm|kk〉 − 〈mk|km〉

)
+ f

∑
n

(
2amn〈mm|nn〉 − bmn〈mn|nm〉

)]
. (4.6)

The first sum in equation (4.6) is equal to zero since the operators Jc and Kc are totally
symmetric (see also equation (2.25b)). Substituting the expressions for the 〈m|Fm|m〉
and 〈m|Fm|m〉 elements into equation (4.2a) one derives the second restriction on the
VCCs amn and bmn:∑

n

(
2amn〈mm|nn〉 − bmn〈mn|nm〉

)
=
∑
n

(
2amn〈mm|nn〉 − bmn〈mn|nm〉

)
(m 6= m). (4.7)

The constraints of equation (4.2a) need further consideration. If the operator Fm
is totally symmetric, its matrix elements 〈m|Fm|m〉 with m 6= m vanish. Since
〈m|Fm|m〉 = θmm, where θmm are the Lagrangian multipliers of equation (1.3), one
obtains

〈m|Fm|m〉 = θmm = 0. (4.8)
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Substitution of equation (4.6) into equation (4.8) gives more rigid symmetry restrictions
on the VCCs amn and bmn than those of equation (4.7):∑

n

(
2amn〈mm|nn〉 − bmn〈mn|nm〉

)
= 0 (m 6= m). (4.9)

In the case of non-Roothaan states, the Fock operators Fm are non-totally sym-
metric (see section 2.3). However, the symmetry restrictions of equations (4.8) and
(4.9) are valid in this case as well.

Equation (4.8) expresses the fundamental condition [1] that the Lagrangian multi-
pliers θmm of equations (1.3) between the orbitals of different symmetry must be equal
to zero. Therefore, equations (4.8) and (4.9) hold in the case of non-totally symmetric
Fock operators as well. A proof of the latter statement is given below.

Off-diagonal matrix blocks

Similar treatment can be given to the off-diagonal matrix blocks, ‖Rvm‖
and ‖Rmv‖, where the index v (v = M + 1,M + 2, . . . ,M + nγ) enumerates the
virtual orbitals. The latter are supposed to be transformed according to the foot-
note “b” of table 1. (The one-to-one correspondence between the orbitals of the two
sets under consideration is necessary for theoretical analysis only. It does not assume
the virtual orbitals transformation in the ROHF calculation.)

Since the operator R is totally symmetric, the following relationships must assert
identically:

RM+m,m =RM+m,m = R∗m,M+m = R∗m,M+m (m 6= m), (4.10)

RM+m,m =RM+m,m = R∗m,M+m = R∗m,M+m = 0 (m 6= m). (4.11)

The diagonal element of the matrix block ‖Rvm‖ takes the form

RM+m,m =
〈
(M +m)

∣∣Fm∣∣m〉
= f

[
HM+m,m +

∑
k

(
2
〈
(M +m)m

∣∣kk〉− 〈(M +m)k
∣∣km〉)

+ f
∑
n

(
2amn

〈
(M +m)m

∣∣nn〉− bmn〈(M +m)n
∣∣nm〉)]. (4.12)

According to the Wigner–Eckart theorem [31], the integrals of type 〈(M +m) ·
m|nn〉 are proportional to the integrals 〈mm|nn〉:〈

(M +m)m
∣∣nn〉 = Cγ〈mm|nn〉, (4.13)

where the coefficient Cγ is the same for all integrals 〈mm|nn〉.
(One can present the simple example where the latter statement is evident. In

case of an atom, the orbitals m and (M +m) have the same angular part, so the Cγ
coefficient is independent of the angular parts of the degenerate orbitals m, m, n, n.)
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Taking into account equations (4.13) and (4.4), one finds that the symmetry
conditions of equation (4.10) give the same restrictions on the VCCs amn and bmn,
as the above conditions of equation (4.1) do. These restrictions are expressed by
equation (4.5).

The off-diagonal matrix element of equation (4.11) is equal to

RM+m,m =
〈
(M +m)

∣∣Fm∣∣m〉
= f

[∑
k

(
2
〈
(M +m)m

∣∣kk〉− 〈(M +m)k
∣∣km〉)

+ f
∑
n

(
2amn

〈
(M +m)m

∣∣nn〉− bmn〈(M +m)n
∣∣nm〉)]. (4.14)

Since equation (4.13), the first sum in equation (4.14) vanishes and, therefore, the
second one is also equal to zero. By using equation (4.13) with the second sum, one
derives the above presented symmetry restrictions of equation (4.9).

Similar consideration can be given to the off-diagonal matrix blocks, ‖Rmk‖
and ‖Rkm‖, not presented in table 1, between the open-shell and closed-shell orbitals.
No new restrictions on the γN state VCCs can be derived from such a considera-
tion [26].

Thus, the requirement for the R operator of equation (2.6) to be totally symmet-
ric imposes the two conditions on the non-variable VCCs amn and bmn, expressed by
equations (4.5) and (4.9). To represent the latter in the form of purely symmetry re-
strictions, one should eliminate from equations (4.5), (4.9) the variable characteristics,
i.e., the one-electron orbitals to be found.

5. General equations for γN state VCCs

According to the above derivation, equations (4.5) and (4.9) are the restrictions on
the VCCs amn and bmn to the extent that they enter the expression for the Fock operator
(equation (1.7)). Since no suppositions have been made on the VCCs symmetry, the
restrictions (4.5) and (4.9) are valid for both the true Fock and “pseudo-Fock” operators
(see section 3.1).

Additional restrictions on the VCCs amn and bmn arise from the requirement
for the γN state energy of equation (1.5) to be related to the basic definition of
equation (2.3).

A straightforward approach for deriving the latter restrictions [26] is based on the
use of the representations for open-shell energy and electron repulsion integrals over
degenerate orbitals in terms of the reduced matrix elements [32,33]. For an atom with
configuration lN (l = p, d, . . .), the latter elements are the Slater–Condon parameters,
F k(l, l) [25]. For molecular γN systems under study (γ = e, t, g, h), corresponding
elements are the molecular invariants, Hk(γ, γ), defined in [14,26].

For completeness, the following presentation of our approach for determining the
γN state VCCs is given in example of dN atoms which provide a way for indepen-
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dent checking [9]. An extension of this approach to molecular γN systems is given
in [26,34].

The ROHF energy of transition-metal atoms can be expressed in terms of the
Slater–Condon parameters, F k(d, d) [25]:

E
(2S+1L, dN

)
= Er +

∑
k

c(k) × F k(d, d), (5.1)

where Er is defined by equation (1.6); c(k) are fundamental constants, characterizing
the dN state (L,S-multiplet) under consideration, and k = 0, 2, 4.

Two representations for transition-metal atom energy, i.e., equations (5.1)
and (2.3), are equivalent, as they both correspond to the Hartree–Fock (monoconfigu-
rational) approximation for the multielectron wave function [25,33]. If one supposes
that this energy can also be represented in the desired form of equation (1.5), the VCCs
amn and bmn to be found should satisfy the condition

f 2
∑
m

∑
n

(2amnJmn − bmnKmn) =
∑
k

c(k) × F k(d, d), (5.2)

where, in this case, the indices m,n enumerate the degenerate open-shell {d} orbitals.
As shown above, the γN state VCCs should also satisfy the two restrictions given

by equations (4.5) and (4.9). These three equations, i.e., equations (4.5), (4.9), (5.2),
give the complete set of equations for determining the VCCs amn and bmn [26].

For representing equations (4.5), (4.9), (5.2) in the form of purely symmetry
restrictions on the VCCs to be found, one should express all electron repulsion in-
tegrals, 〈mm|nn〉, over the degenerate {d} orbitals in terms of the reduced matrix
elements [25]:

〈mm|nn〉 =
∑
k

α(k)(m,m,n,n)× F k(d, d), (5.3)

where α(k)(m,m,n,n) with k = 0, 2, 4 are the coefficients specific for the integral
and the basis of {d} orbitals under consideration [25]. In the particular case of the
Coulomb and exchange integrals, equation (5.3) takes a usual form

Jmn =
∑
k

p(k)
mn × F k(d, d), Kmn =

∑
k

q(k)
mn × F k(d, d), (5.4)

where p(k)
mn = α(k)(m,m,n,n) and q(k)

mn = α(k)(m,n,n,m). The values of these
coefficients, corresponding to k = 2 and k = 4, are given in [25] for complex {d}
orbitals and in [35] for real ones. The remaining coefficients, p(0)

mn and q(0)
mn, have the

same values for any choice of {d} orbitals [25,35]:

p(0)
mn = 1, q(0)

mn = δmn. (5.5)
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Most of the integrals in equation (5.3), defined over the {d} orbitals of either
set [25,35], apart from the Coulomb and exchange vanish. For example, in the case
of real {d} orbitals

{φm} =
{

d
(
z2), d(xz), d(yz), d

(
x2 − y2), d(xy)

}
=
{
σ,π,π′, δ, δ′

}
, (5.6)

one has the following non-vanishing 3 and 4 indexed integrals [35]:

〈σδ|π′π′〉=−〈σδ|ππ〉 = −〈σδ′|ππ′〉 = 2
√

3B,

〈σπ|πδ〉=−〈σπ′|π′δ〉 = 〈σπ|π′δ′〉 = 〈σπ′|πδ′〉 =
√

3B, (5.7)

〈πδ|π′δ′〉=−〈πδ′|π′δ〉 = 3B,

where B = (9F 2−5F 4)/441 is the Racah parameter [36]. In the case of complex {d}
orbitals, all three indexed integrals of type 〈mm|nn〉 and 〈mn|nm〉, m 6= m, entering
equation (4.9), vanish [25].

The desired form of the purely symmetry restrictions on the VCCs to be found
is obtained from equations (4.5), (4.9), (5.2), by substituting the representations of
equations (5.3), (5.4). The following equalization of the terms, containing the F 0, F 2

and F 4 parameters, respectively, on the left and right hand sides of every equation
gives the desired form.

In the case of equation (5.2), such a procedure gives 3 linear non-uniform equa-
tions:

f 2
∑
m

∑
n

(
2amnp

(k)
mn − bmnq(k)

mn

)
= c(k), (5.8)

where k = 0, 2 and 4, respectively, for determining the unknown VCCs amn and bmn
in terms of the known symmetry coefficients p(k)

mn, q(k)
mn and c(k).

A similar substitution of equation (5.4) into equation (4.5) gives uniform equa-
tions ∑

n

(
2amnp

(k)
mn − bmnq(k)

mn

)
=
∑
n

(
2amnp

(k)
mn − bmnq(k)

mn

)
, (5.9)

where m 6= m and k = 0, 2, 4. Since the number of independent pairs of indices
(m,m) is equal to 4 (e.g., m = 1 and m = 2, 3, 4, 5), the number of independent
equations (5.9) is equal to 12.

Substitution of equation (5.3) into equation (4.9) gives∑
n

(
2amnα

(k)(m,m,n,n)− bmnα(k)(m,n,n,m)
)

= 0 (m 6= m). (5.10)

In this case the number of independent pairs of indices (m,m) is equal to 20 = 5× 4,
since the pairs (m,m) and (m,m) are non-equivalent.

In the particular case of real {d} orbitals (equation (5.6)), the number of equa-
tions (5.10) reduces to 2. Those non-vanishing equations correspond to the following
pairs of the indices (m,m):

(m = σ,m = δ): 4(aσπ − aσπ′) + (bσπ − bσπ′) = 0 (5.11a)
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and

(m = δ,m = σ): 4(aδπ − aδπ′) + (bδπ − bδπ′) = 0 (5.11b)

(see also equation (5.7)). In the case of the complex {d} orbitals [25], equations (5.10)
do not impose any restrictions on the VCCs to be found.

Thus, the (2S+1L, dN ) state VCCs amn and bmn entering equations (1.5) and (1.7)
have to satisfy the set of symmetry restrictions given by equations (5.8)–(5.10). These
restrictions express the necessary physical requirements and so are valid in all cases,
i.e., regardless of using any other restrictions such as those of equation (1.8).

Comments on equations (5.8)–(5.10)

The details in solving equations (5.8)–(5.10) are given in the next section for
both the real and complex {d} orbitals. Here we point out some general aspects of
these equations.

1. For both the {d} orbitals basises [25,35], the number or equations (5.8)–(5.10)
is less than the number of unknowns, amn and bmn, equal to 50 = 2× (5 × 5). This
means that there is the arbitrariness in the choice of the dN state VCCs.

According to [6,24], such an arbitrariness is inherent in the ROHF theory for all
γN systems. The simple criterion on the validity of the so-defined VCCs is as fol-
lows [13]: if the set of equations for determining the VCCs is the complete one, i.e.,
involves all the necessary restrictions on the VCCs to be found, the remaining arbitrari-
ness in the choice of the VCCs has no effect on the results of the ROHF calculations.

2. As follows from equations (5.8)–(5.10), the VCCs amn and bmn to be found de-
pend on the choice of {d} orbitals. (The coefficients α(k)(m,m,n,n) of equation (5.3)
are specific ones for each {d} orbitals basis.) Such a dependence is the particular case
of general “VCCs phase dependence” expressed by equation (2.13).

3. For any choice of {d} orbitals, the VCCs amn and bmn defined by equa-
tions (5.8)–(5.10) satisfy the fundamental condition of equation (2.23). For dN states
under study, equation (2.23) immediately follows from equations (5.5) and (5.8) with
k = 0, since c(0) = N (N − 1)/2 [25].

6. Non-symmetric VCCs for transition-metal atoms

This section presents the different solutions of equations (5.8)–(5.10) and the
results of the ROHF calculations on dN atoms performed with the VCCs found. For
solving equations (5.8)–(5.10) we use the special code designed in integers [26]. Such
a method of solving is possible, as all the coefficients, c(k), p(k)

mn and q(k)
mn, entering

equations (5.8)–(5.10) are the rational numbers [25,35]. With this method one obtains
the exact solution, i.e., without truncation errors. In the problem under study, the latter
is essential as it permits one to avoid any ambiguity when recognizing the solution,
i.e., either the VCCs amn and bmn are symmetric or non-symmetric.
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6.1. Basis of real {d} orbitals

In the case of real {d} orbitals (equation (5.6)), one can derive the solution of
equations (5.8)–(5.10) in the symmetric form of equation (1.8):

amn = anm, bmn = bnm,

for only several states of the configuration dN . The analysis of equations (5.8) and
(5.9) added by the restrictions of equation (1.8) shows that the unified set of equa-
tions (5.8), (5.9), (1.8) is compatible if and only if the coefficients c(k) characterizing
the (2S+1L, dN ) state under study satisfy the condition

c(2) = c(4). (6.1)

This result stems from a numerical solving as follows. Taking into account equa-
tion (1.8), one has 30 independent unknowns, amn and bmn, and 15 equations (5.8),
(5.9) for their determination. Let us resolve 12 homogeneous equations (5.9) with
respect to some 12 unknowns. Substitution of this solution into equations (5.8) shows
that the left-hand sides of the two equations (5.8), corresponding to k = 2 and k = 4,
appear to be identical to each other.

The latter result also holds if one first resolves equations (5.9) with respect to 12
arbitrary unknowns, and then imposes the symmetry restrictions of equation (1.8).

In other words, if symmetric VCCs amn and bmn satisfy equations (5.9), they
also satisfy the equation∑

m

∑
n

(
2amnp

(2)
mn − bmnq(2)

mn

)
=
∑
m

∑
n

(
2amnp

(4)
mn − bmnq(4)

mn

)
. (6.2)

In turn, equation (6.2) together with equation (5.8) leads to the above condition (6.1).
Thus, with symmetric VCCs of equation (1.8) one can calculate only those

(2S+1L, dN ) states for which c(2) = c(4). A list of such states and the structure of
symmetric VCCs matrices are presented below.

To gain a better understanding of the crucial restriction (equation (6.1)), we
consider the states of a configuration dN described by the Roothaan one-open-shell
SCF theory [1], i.e., characterized by the two coupling coefficients of equation (2.5):

amn = a, bmn = b.

Using the same values of the p(k)
mn and q(k)

mn coefficients [35], one derives from equa-
tions (5.8) and (2.5) the following relations [9]:

c(0) = f 2(50a− 5b),

c(2) =−630f 2b/441, (6.3)

c(4) =−630f 2b/441.
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It follows herefrom that the dN states described by the Roothaan’s ROHF theory [1]
are those ones for which c(2) = c(4). The corresponding values of the state VCCs are
obtained from equation (6.3):

a =
(
2c(0) − 7c(2))/(100f 2), b = −7c(2)/(10f 2). (6.4)

It is easy to show that the VCCs of equation (6.4) also satisfy homogeneous
equations (5.9). The latter follows from the known properties of the coefficients p(k)

mn

and q(k)
mn [25,35]:∑

n

p(k)
mn =

∑
n

p(k)
mn,

∑
n

q(k)
mn =

∑
n

q(k)
mn (m 6= m). (6.5)

(Relations (6.5) also follow from above equation (2.25a).) In a similar way one finds
that the VCCs of equation (6.4) satisfy equation (5.10) (the latter immediately follows
from equation (2.25b)). Thus, the VCCs of equation (6.4) represent the particular
solution of equations (5.8)–(5.10) for the states where c(2) = c(4).

In line with the above terminology (see section 2), the (2S+1L, dN ) multiplets
with c(2) = c(4) are the Roothaan states, since they can be calculated with the VCCs
of type (amn = a, bmn = b). Table 2 gives a list of such states along with the
corresponding values of the a and b coefficients.

As shown above, for the states with c(2) = c(4) one can also derive more general
solutions, i.e., symmetric VCCs matrices, amn and bmn. Since the number of the VCCs

Table 2
Coupling coefficients a and b of equation (6.4) for the states of atomic configura-

tions dN described by the Roothaan one-open-shell SCF theory [1].

Configuration, state a b c(2) = c(4) [25]∗

d1 2D 0 0 0
d2 1S 0 −5 126/441
d4 5D 15/16 30/16 −189/441
d5 6S 1 2 −315/441
d6 5D 35/36 50/36 −315/441
d8 1S 15/16 10/16 −252/441
d9 2D 80/81 80/81 −504/441

∗The values of the c(2) and c(4) coefficients used in the present article differ from
those given by Slater, c(2)

av and c(4)
av [25], as the latter correspond to the following

expression for a state energy

E
(

2S+1L, dN
)

= Eav + c(2)
av F

2 + c(4)
av F

4,

where Eav is the average energy of the configuration dN [25],

Eav = Er +N(N − 1)
(
F 0/2− 7

(
F 2 + F 4

)
/441

)
,

and Er is defined by equation (1.6). Comparison of these expressions with
equation (5.1) gives c(0) = N(N − 1)/2, c(2) = c(2)

av − 7N(N − 1)/441, and
c(4) = c(4)

av − 7N(N − 1)/441.
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Table 3
General structure of the matrix bmn for the states of the configuration dN over

the basis of real {d} orbitals∗ (amn = a = c(0)/(50f 2) + β/10).

σ = d(z2) π = d(xz) π′ = d(yz) δ = d(x2 − y2) δ′ = d(xy)

σ β R R R+ 3Q R+ 3Q
π R− 3Q β R+ 3Q R+ 3Q R+ 3Q
π′ R− 3Q R+ 3Q β R+ 3Q R+ 3Q
δ −2R+ 6Q+ 3ω 3R− 2ω 3R− 2ω β ω
δ′ −2R+ 6Q+ 3ω0 3R− 2ω0 3R− 2ω0 ω0 β

∗R = 7(5c(2) − 12c(4))/(50f 2)− 4β/10,
Q = 7(−5c(2) + 5c(4))/(50f 2),
and β, ω and ω0 are the arbitrary numbers.

to be found is greater than the total number of equations (5.8), (5.9), (5.11), there is an
infinite number of such solutions. Moreover, one can also derive non-symmetric VCCs
of type (equation (1.9)), if the symmetry restrictions of equation (1.8) are neglected
(see below).

A principally distinct situation takes place if the coefficients c(2) and c(4) for the
(2S+1L, dN ) state under study are not equal to each other:

c(2) 6= c(4). (6.6)

For such “non-Roothaan” states, the set of equations (5.8), (5.9) added by the rigid
VCCs symmetry restrictions of equation (1.8) is incompatible, despite the great dif-
ference in the number of unknowns and equations. For such states, the set of equa-
tions (5.8)–(5.10) has only non-symmetric solutions of type (equation (1.9)).

Table 3 presents a general solution for equations (5.8)–(5.10) over the real {d}
orbitals. The three types of solutions mentioned above, indicated by equations (1.8),
(1.9) and (6.4), are the particular cases of this general one. Let us make some necessary
comments on the data tabulated.

The general solution of equations (5.8), (5.9) contains 35 = 50 − 15 arbitrary
parameters. To present this solution in a practically convenient form, we put all
coefficients amn equal to each other

amn = a, (6.7)

where a is some quantity to be determined. Besides, we constrained the bmn coeffi-
cients by the additional “natural” restrictions

bσπ = bσπ′ ; bσδ = bσδ′ ; bππ′ = bπδ = bπδ′ ;
bδπ = bδπ′ ; bδ′π = bδ′π′ ; bπ′π = bπ′δ = bπ′δ′ .

(6.8)

(Relations (6.8) follow in a natural way from equations (5.8), (5.9), as the unknowns
(bσπ and bσπ′), (bσδ and bσδ′ ), . . . , enter each of equations (5.8) and (5.9) with equal
coefficients.) Due to relations (6.7), (6.8), the necessary symmetry restrictions of
equations (5.11a,b) are satisfied automatically.
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Equations (6.7) and (6.8) give 24 and 8 additional relations, respectively, there-
fore the solution of the set of equations (5.8), (5.9), (6.7), (6.8) contains 3 arbitrary
parameters, denoted in table 3 as ω, ω0 and β.

As follows from table 3, matrix ‖bmn‖ is in general a non-symmetric one for all
the (2S+1L, dN ) states. In quantum chemical calculations one can use any numerical
values of the a and bmn coefficients of table 3, according to the choice of arbitrary
parameters (see below).

The symmetric form of the matrix ‖bmn‖ can be obtained only for the Roothaan
dN states discriminated by the condition c(2) = c(4). Putting the arbitrary numbers
ω = ω0 = R, one obtains

amn = c(0)/
(
50f 2)+ β/10,

(6.9)
bmn = δmnβ − (1− δmn)

(
49c(2)/

(
50f 2)+ 4β/10

)
.

If one put further β = R = −7c(2)/(10f 2), the coupling coefficients are obtained in
the standard Roothaan’s form of equation (6.4).

For the non-Roothaan states with c(2) 6= c(4), the solution of equations (5.8), (5.9),
(5.11) cannot be derived in the symmetric form of equation (1.8) for any choice of arbi-
trary parameters. This principal conclusion immediately follows from equations (5.8),
(5.9) and is not caused by using any additional relations between unknowns.

Table 4 presents the results of non-empirical SCF calculations on transition-metal
atoms performed by two different ROHF methods, i.e., by the unified coupling operator
(UCO) method [1–5] and by the Roothaan–Bagus atomic “expansion method” [12].
The first column of table 4 presents our results [9,26] derived by the ROHF–UCO
method using the VCCs of tables 2 and 3.

Comments on the ROHF–UCO calculations

All calculations were performed by the MONSTERGAUSS program [39] mod-
ified in some points as described in [9]. In the first place, we have checked that the
results of the ROHF calculations do not depend on the arbitrariness in the choice of
the VCCs of table 3. It has been made by the variation of arbitrary numbers β, ω
and ω0.

Additional calculations were carried out for checking the restrictions of equa-
tions (5.11a,b) that were not taken into account in [9]. For this purpose, we varied the
values of the VCCs entering equation (5.11) without changing the other VCCs. (In
the course of this variation, the additional relations (6.7) and (6.8) were lifted.)

For eliminating the VCCs phase dependence (see section 2.2), all calculations
were carried out over real {d} orbitals of the fixed representation. Degenerate open-
shell {d} orbitals were transformed at each iteration to the form of equation (5.6).

The data presented in table 4 can be summarized as follows:

1. The identity of the ROHF–UCO results for dN atoms derived with using dif-
ferent VCCs sets means the physical equivalency of all the solutions of equa-
tions (5.8)–(5.10).
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Table 4
Energy of the first row transition atoms (in a.u.), calculated by two different ROHF methods

(Gaussian basis set (14s9p5d)/[8s4p2d] from [37]).

Atom, Unified SCF coupling Roothaan–Bagus
configuration, operator method [1–5] “expansion method” [12]

statea [9,26]b [11]c [37] [38]

Sc d1 2D −759.705047 −759.705047 −759.7050 −759.705048
Ti d2 3F −848.367900 (−848.349942) −848.3685 −848.367900
V d3 4F −942.837196 (−942.817440) −942.8372 −942.837196
E(S = 3/2) −942.817440d – – −942.817440

4P −942.771401 – – −942.771402
2G −942.770986 – – −942.770986

2H, 2P −942.749087 – – −942.749088
2F −942.683500 – – –

Cr d4 5D −1043.249620 −1043.249620 −1043.2497 −1043.249620
Mn d5 6S −1149.787155 −1149.787155 −1149.7872 −1149.787155
Fe d6 5D −1262.350361 −1262.350361 −1262.3504 −1262.350360
Co d7 4F −1381.289383 (−1381.263774) −1381.2895 −1381.289382
Ni d8 3F −1506.720591 (−1506.693632) −1506.7206 −1506.720590
Cu d9 2D −1638.786455 −1638.786455 −1638.7867 −1638.786455

d10s1 2S −1638.801243 −1638.801243 −1638.8015 −1638.801243

aBy fat font we mark the “non-Roothaan” states, for which c(2) 6= c(4) [25].
bCalculations performed using the VCCs from tables 2 and 3. For the Roothaan states,
both symmetric and non-symmetric VCCs were used corresponding to the different values
of arbitrary numbers β, ω and ω0. Non-Roothaan states were calculated by the use of
non-symmetric VCCs only (symmetric VCCs do not exist).

cCalculations performed with symmetric VCCs, derived by Peterson for both the Roothaan
and non-Roothaan states (see [11, pp. 67–69]). Similar VCCs have been earlier derived
by Guest and Saunders [18].

dAverage energy of the d3 states with S = 3/2 (see discussion in [9]).

2. Of prime importance is the equivalency of symmetric and non-symmetric VCCs
(in those cases where symmetric VCCs exist). The cause of such an equivalency
is discussed in section 7.

3. The non-Roothaan dN states discriminated by the condition c(2) 6= c(4), can be
calculated with non-symmetric VCCs only. This result explains the discrepancy
between the previously published data [11,37] (see table 4).

6.2. Basis of complex {d} orbitals

Essentially distinct results are obtained if one uses the complex {d} orbitals

{φm} = {d0, d+1, d−1, d+2, d−2}. (6.10)

Recall that the difference between the VCCs over the real and complex {d} orbitals
arises due to the difference in corresponding coefficients p(k)

mn and q(k)
mn of equa-

tion (5.4) [25,35].
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Table 5
General structure of the matrix bmn for the states of the configuration dN over

the basis of complex {d} orbitals∗ (amn = a = c(0)/(50f 2) + β/10).

0 +1 −1 +2 −2

0 β R R R+ 3Q R+ 3Q
+1 4R− 6τ β 2Q+ β/2 + τ R+ 2Q −R+ 4τ
−1 4R− 6τ 2Q+ β/2 + τ β −R+ 4τ R+ 2Q
+2 R+ 3Q R+ 2Q Q+ β − 2ν β R+ ν
−2 R+ 3Q Q+ β − 2ν R+ 2Q R+ ν β

∗R = 7(5c(2) − 12c(4))/(50f 2)− 4β/10,
Q = 7(−5c(2) + 5c(4))/(50f 2),
and β, τ and ν are the arbitrary numbers.

In the case of complex {d} orbitals, one can derive a solution for equations (5.8)
and (5.9) in symmetric form for all states for which the Slater–Condon representation
of a state energy (equation (5.1)) is valid. In contrast with the case of real {d} orbitals,
symmetric VCCs amn and bmn derived from equation (5.9) over complex {d} orbitals,
do not satisfy equation (6.2) identically. Instead of the latter equation, one obtains two
equations (5.8), corresponding to k = 2 and k = 4, with non-equal left-hand sides.

Table 5 presents a general solution [26] for equations (5.8), (5.9) over com-
plex {d} orbitals. (Recall that in this case equation (5.10) does not impose any
restrictions on the VCCs to be found.) In order to present this solution in a prac-
tically convenient form (with three arbitrary parameters as in table 3), we use the
same restrictions on the amn coefficients as above: amn = a (see equation (6.7)), and
corresponding “natural” relations between the bmn coefficients:

b0,1 = b0,−1; b0,2 = b0,−2. (6.11)

To exclude the remaining arbitrariness, the following additional relations are used:

b1,0 = b−1,0; b1,−1 = b−1,1;

b1,−2 = b−1,2; b2,−1 = b−2,1;
(6.12)

b2,−2 = b−2,2; b1,2 = b−1,−2 = b2,1 = b−2,−1;

b2,0 = b−2,0 = b0,2.

Relations (6.12) reduce the number of unknowns, bmn, and simultaneously reduce the
number of independent equations (5.9) to 8 [26]. The net result is that the solution
of equations (5.8), (5.9) added by the additional relations of equations (6.7), (6.11),
(6.12) has three arbitrary parameters denoted in table 5 as β, τ and ν.

In line with the above discussion, in the ROHF calculations one can use any
numerical values of the a and bmn coefficients of table 5, according to the choice of
arbitrary parameters. If one chooses the latter as

τ = R/2, ν = (−R+Q+ β)/2 (6.13)
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(see table 5), the VCCs are obtained in symmetric form for all non-multiple (non-
double) states of a configuration dN .

As in the previous case of real {d} orbitals, the specific Roothaan’s form of the
VCCs given by equation (6.4) can be derived for the states with c(2) = c(4) if one put
further β = R = −7c(2)/(10f 2).

7. Equivalency of auxiliary Fock operators

As pointed out in section 3, the expression for the Fock operator of equation (1.7)
with non-symmetric VCCs defines some “pseudo-Fock” operators that cannot be de-
rived straightforwardly from expression for energy. However, as follows from the
results of the ROHF calculations on the Roothaan dN states (see table 4), the use of
both the true and “pseudo-Fock” operators leads to the same ROHF results.

Such an equivalency of different Fock operators demonstrates a general character
of equations (5.8)–(5.10) that define the VCCs and thus define the “pseudo-Fock” op-
erators themselves. This equivalency also shows the rigid VCCs symmetry restrictions
of equation (1.8) to be unnecessary.

However, the question of equivalency of the true and pseudo Fock operators
needs a more rigorous treatment. This section presents the proof of the following
statement:

The expression for the Fock operator (equation (1.7)), in which the coefficients
amn and bmn are determined by equations (5.8)–(5.10), defines a whole class of the
Fock-like operators equivalent from the viewpoint of the Euler and Hartree–Fock equa-
tions. In other words, the basic ROHF variational equations (1.3), (2.4) expressed in
terms of both the true and pseudo Fock operators give the same optimum orbitals.

To simplify the following treatment, we designate the symmetric VCCs as Amn
and Bmn. The above designations, amn and bmn, are used for non-symmetric VCCs
only. Both the VCCs sets, {Amn,Bmn} and {amn, bmn}, are supposed to be derived
from equations (5.8)–(5.10) or, what is the same, from initial equations (4.5), (4.9),
(5.2).

In general, non-symmetric VCCs amn and bmn cannot be symmetrized, i.e.,
their symmetric combinations, (amn + anm)/2 and (bmn + bnm)/2, do not represent
the solution of equations (5.8)–(5.10) (see, e.g., table 3). Because of this,

Amn 6= (amn + anm)/2, Bmn 6= (bmn + bnm)/2. (7.1)

Using the two VCCs sets, {Amn,Bmn} and {amn, bmn}, one can construct the
two corresponding sets of the Fock operators by equation (1.7). The operators con-
structed with symmetric VCCs Fm{Amn,Bmn}, are nothing but the true Fock operators
Φm defined by equation (3.3)

Fm{Amn,Bmn} = Φm. (7.2a)
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The “pseudo-Fock” operators, Fm{amn, bmn}, constructed with non-symmetric VCCs
have no counterparts among the Φm operators. To distinguish the operators of the two
sets, the Fm{amn, bmn} operators are designated as merely Fm:

Fm{amn, bmn} = Fm. (7.2b)

In general, the operators Φm and Fm corresponding to the same one-electron
orbital Φm are not equal to each other:

Φm 6= Fm (m = 1, 2, . . . , dim γ). (7.3)

In particular, if one uses the Roothaan’s VCCs of equation (6.4), all the Φm operators
are equal to each other, Φm = Φ0, and are totally symmetric. By contrast, the Fm
operators of equation (7.2b) are always non-totally symmetric (see section 2.3) and are
not equal to each other.

We wish to prove that the two unified coupling operators of equation (2.6), R{Φ}
and R{F}, constructed by using the two above sets of Fock operators (equations (7.2),
(7.3)) are identical, i.e.,

R{Φ} ≡ R{F}. (7.4)

(By writing identity (7.4) one assumes that the set of trial orbitals, {φi}, used for con-
structing the Φm and Fm operators is the same in both cases.) Here we do not consider
the closed-shell Fock operator Fc of equation (2.27a) as the latter is independent of
the state VCCs.

Taking into account the structure of the R operator matrix (see table 1), the
proof of equation (7.4) reduces to the proof of identity of the diagonal elements in
corresponding matrix blocks:〈

m
∣∣R{Φ}

∣∣m〉≡ 〈m∣∣R{F}
∣∣m〉, (7.5)〈

(M +m)
∣∣R{Φ}

∣∣m〉≡ 〈(M +m)
∣∣R{F}

∣∣m〉. (7.6)

(Diagonal elements of type 〈(M + m)|R{F}|(M + m)〉 defined over virtual orbitals
vanish; see equation (2.6).)

Due to expressions (4.3) and (4.4), equation (7.5) takes the form∑
n

(2AmnJmn −BmnKmn) =
∑
n

(2amnJmn − bmnKmn). (7.7)

Since both symmetric {Amn,Bmn} and non-symmetric {amn, bmn} VCCs satisfy equa-
tions (5.2) and (4.5), the left- and right-hand sides of equation (7.7) do not depend on
the index m and are equal to the same quantity∑

k

c(k) × F k(d, d)/
(
f 2 dim γ

)
(7.8)

and therefore are equal to each other. The proof of equation (7.6) can be derived in a
similar way if one takes into account equations (4.9), (4.13) and (4.14).



B.N. Plakhutin / Coupling coefficients “symmetry dilemma” 231

Thus, two unified coupling operators, R{Φ} and R{F}, appear to be identical to
each other despite the auxiliary Fock operators, Φm and Fm, are essentially distinct. It
is this result that has been found in the ROHF–UCO calculations [9,10,13] on different
γN systems.

According to [2,3], the occupied orbitals {φi} found by solving the Hartree–Fock
equation (2.4) represent the solution of the Euler equations (1.3) as well. Taking into
account the identity of the operators R{Φ} and R{F}, one concludes that in the self-
consistent limit (Rij = δijεi) both sets of the Fock operators, {Φm} and {Fm}, satisfy
the Euler equations (1.3a,b) with the same set of {φi} orbitals.

Concluding remarks

The above equivalency of the true Fock and “pseudo-Fock” operators has the
apparent origin. Although the two operators, Φm and Fm, corresponding to the same
one-electron orbital φm are not equal to each other, their matrices, ‖Φm‖ and ‖Fm‖,
have one identical row and column with the number “m”, i.e.,

〈m|Φm|j〉 = 〈m|Fm|j〉, 〈j|Φm|m〉 = 〈j|Fm|m〉, (7.9)

where the index j runs over all one-electron orbitals (both occupied and virtual). This
result immediately follows from the above derivation of equations (4.5) and (4.9).

In other words, if the open-shell Fock operator is defined by equation (1.7), in
which the coefficients amn and bmn are defined by equations (5.8)–(5.10), the matrix
elements of equation (7.9) are the only ones that are defined unambiguously. All other
matrix elements depend on the choice of the VCCs (e.g., symmetric or non-symmetric),
i.e., are defined in an ambiguous manner.

Such a non-uniqueness of the Fock operator matrix is dictated actually by vari-
ational equations. The Fock operator Fm is defined by how it operates on the given
orbital φm, so the elements of equation (7.9) are the only ones necessary for solving
the Euler equation (1.3) or for constructing the matrix of one-electron Hamiltonian R
by equation (2.6). All other matrix elements are immaterial.

8. Summary

The present study was initiated by the works [11,16,17] where it was shown
that the existing ROHF theory cannot be directly applied to some open-shell states of
highly symmetric systems, such as fullerenes with electronic configurations gN and
hN , and dN atoms. To eliminate this limitation of the theory, we have reanalysed the
symmetry restrictions to which the γN state VCCs, amn and bmn, must satisfy in a
general case (γ = p, d, . . . for atoms, and γ = e, t, g, h for non-linear molecules).

The final expressions for determining the VCCs are given by equations (5.8)–
(5.10). The most important result following from these equations is that some γN states
can be calculated with non-symmetric VCCs only. A testing of the theory developed
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in an appropriate sample of dN atoms showed it does overcome the limitation [11]
under study (see table 4).

However, the new VCCs symmetry restrictions of equations (5.9), (5.10) come
into conflict with the known ones of equation (1.8) which are more rigid. The main
problem is that the Fock operators of equation (1.7) constructed with non-symmetric
VCCs cannot be derived straightforwardly from the energy functional of equation (1.5)
(for details, see section 3).

We have shown that in contrast to the Fock operators, the total one-electron
Hamiltonian R of equation (2.4) is independent of the VCCs symmetry. In particular,
for those γN states for which both symmetric and non-symmetric VCCs exist, the use
of either VCCs set leads to the same operator R, i.e., gives the same Hartree–Fock
orbitals. The latter proves the validity of the approach developed.

An extension of this approach to molecular γN systems is given in [26]. In the
next article [34] we present the VCCs values for open-shell fullerenes of icosahedral
symmetry discussed in [16,17] along with the results of corresponding non-empirical
calculations.

However, not all the questions are answered in our approach regarding the VCCs
asymmetry. The Fock operators with non-symmetric VCCs are introduced in the form
of a postulate and this is why we call the problem under study the VCCs symmetry
dilemma.
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